Graphing by Hand

[tlg_steps style=”steps-style-2″][tlg_steps_content step_link=”url:http%3A%2F%2F127.0.0.1%2Fmkmath%2Fcalculus%2F” title=”Calculus” icon=”ti-arrow-circle-right” subtitle=”Topics”][tlg_steps_content step_link=”url:http%3A%2F%2F127.0.0.1%2Fmkmath%2Fcalculus%2Fintro%2F|title:Introductory%20Calculus” title=”General” icon=”ti-arrow-circle-right” subtitle=”Topics”][/tlg_steps] Here are tips for graphing. First, you need to find x-intercepts and y-intercept, if possible. For x-intercepts, setting y=0 to find x-values and similarly, setting x=0 to find y-intercept. Then, investigate if there are any asymptotes for fractional functions. For the horizontal asymptotes, we need…

Limits At Infinity

[tlg_steps style=”steps-style-2″][tlg_steps_content step_link=”url:http%3A%2F%2F127.0.0.1%2Fmkmath%2Fcalculus%2F” title=”Calculus” icon=”ti-arrow-circle-right” subtitle=”Topics”][tlg_steps_content step_link=”url:http%3A%2F%2F127.0.0.1%2Fmkmath%2Fcalculus%2Fintro%2F|title:Introductory%20Calculus” title=”Introductory” icon=”ti-arrow-circle-right” subtitle=”Topics”][/tlg_steps] To evaluate the limit as x approaches infinity, take the largest exponent term each from the numerator and denominator, simplify the fraction, and then apply the limit rules as shown. More in this Section [tlg_blog layout=”carouseldetail” pppage=”-1″ pagination=”yes” overlay=”no-overlay” filter=”455″]

Solving Differential Equation by Laplace Transforms

[tlg_steps style=”steps-style-2″][tlg_steps_content step_link=”url:http%3A%2F%2F127.0.0.1%2Fmkmath%2Fcalculus%2F” title=”Calculus” icon=”ti-arrow-circle-right” subtitle=”Topics”][tlg_steps_content step_link=”url:http%3A%2F%2F127.0.0.1%2Fmkmath%2Fcalculus%2Fintro%2F|title:Introductory%20Calculus” title=”General” icon=”ti-arrow-circle-right” subtitle=”Topics”][/tlg_steps] Before starting the example, you need to know the following steps to solve DE by Laplace transforms. Step 1. Take the Laplace transforms of both sides of the equation. Step 2. Solve for the Laplace of Y. Step 3. Manipulate the Laplace transform, F(s) until…

Fourier Series

[tlg_steps style=”steps-style-2″][tlg_steps_content step_link=”url:http%3A%2F%2F127.0.0.1%2Fmkmath%2Fcalculus%2F” title=”Calculus” icon=”ti-arrow-circle-right” subtitle=”Topics”][tlg_steps_content step_link=”url:http%3A%2F%2F127.0.0.1%2Fmkmath%2Fcalculus%2Fintro%2F|title:Introductory%20Calculus” title=”General” icon=”ti-arrow-circle-right” subtitle=”Topics”][/tlg_steps] Before looking at the example, you need to know the formula of Fourier Series as shown. If you know the additional information shown, you could reduce your work. (1) Odd functions have Fourier Series with only sine terms, which means you only find the coefficients,…

2nd order Nonhomogeneous Differential Equation

[tlg_steps style=”steps-style-2″][tlg_steps_content step_link=”url:http%3A%2F%2F127.0.0.1%2Fmkmath%2Fcalculus%2F” title=”Calculus” icon=”ti-arrow-circle-right” subtitle=”Topics”][tlg_steps_content step_link=”url:http%3A%2F%2F127.0.0.1%2Fmkmath%2Fcalculus%2Fintro%2F|title:Introductory%20Calculus” title=”General” icon=”ti-arrow-circle-right” subtitle=”Topics”][/tlg_steps] Before looking at the example, you need to know the solution formula for second-order differential equations ay”+ by’ +cy = f(x) as shown. Notice that there are two parts, y-sub C and y-sub P in the complete solution. One part, y-sub C is solving a…