[tlg_steps style=”steps-style-2″][tlg_steps_content step_link=”url:http%3A%2F%2F127.0.0.1%2Fmkmath%2Fcalculus%2F” title=”Calculus” icon=”ti-arrow-circle-right” subtitle=”Topics”][tlg_steps_content step_link=”url:http%3A%2F%2F127.0.0.1%2Fmkmath%2Fcalculus%2Fdifferentiations%2F|title:Introductory%20Calculus” title=”Differentiation” icon=”ti-arrow-circle-right” subtitle=”Topics”][/tlg_steps]
- Draw a picture of the scenario, if you can.
- Step(1) Formulate the objective function.
- Step(2) Reduce the objective function to One variable.
- Step(3) Take the derivative of the function and find the critical value(s).
- Step(4) Find the local max or min by either First derivative (for rational fractions ) or Second derivative test (polynomials) and check the end points to locate the max or min.